Fabrication of a Fabry–Pérot Cavity in a Microfluidic Channel Using Thermocompressive Gold Bonding of Glass Substrates

نویسنده

  • Hua Shao
چکیده

This paper presents a simple, low-cost, and reliable process for the fabrication of a microfluidic Fabry–Pérot cavity in a Pyrex glass substrate. The microfluidic channels were etched in HF solution on a glass substrate using a Cr/Au/photoresist etching mask resulting in a channel bottom roughness of 1.309 nm. An effective thermocompressive gold–gold bonding technique was used to bond the photolithographically etched glass substrates inside a 350 C oven in a 10 3 torr vacuum. Pressure was applied to the glass pieces by using two aluminum blocks with intermediate copper sheets. This method takes advantage of using Cr/Au layers both as a wet etching mask and as intermediate bonding layers, requiring only one lithography step for the entire process. The fabrication method is also compatible with the incorporation of dielectric mirror coatings in the channels to form a high-finesse Fabry–Pérot cavity. A parallelism of 0.095 degrees was measured, and a finesse as high as 30 was obtained using an LED. The microfluidic cavity developed here can be used in electrophoresis and intracavity spectroscopy experiments. [1375]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates.

Microfluidic and nanofluidic technologies have long sought a fast, reliable method to overcome the creative limitations of planar fabrication methods, the resolution limits of lithography, and the materials limitations for fast prototyping. In the present work, we demonstrate direct 3D machining of submicrometer diameter, subsurface fluidic channels in glass, via optical breakdown near critical...

متن کامل

The Design and Fabrication of a Microfluidic Reactor for Synthesis of Cadmium Selenide Quantum Dots Using Silicon and Glass Substrates

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. C...

متن کامل

A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of to...

متن کامل

Micro-patterned Polystyrene Substrates for Highly Integrated Microfluidic Cell Culture

Adherent mammalian cells dynamically interact with their extracellular matrix (ECM) and culture substrate. To accommodate this sensitivity, standard culture techniques typically utilize tissue culture polystyrene (TCPS), a treated polystyrene substrate that promotes cell attachment. However, TCPS cannot be easily integrated into microfluidic devices as it is incompatible with conventional fabri...

متن کامل

A new approach for fabrication of bulk MMCs using Accumulative Channel-die Compression Bonding (ACCB)

A new severe plastic deformation (SPD) based technique entitled Accumulative channel-die compression bonding (ACCB) is proposed for the fabrication of high strength multi-layered Al/Cu composites for the first time. In order to primarily demonstrate the capabilities of ACCB in the fabrication of metal matrix composites (MMCs), AA 1050 and pure Cu strips were processed. The primary Al/Cu sandwic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005